If #A= <7 ,-5 ,1 ># and #B= <28 ,6 ,7 >#, what is #A*B -||A|| ||B||#?

1 Answer
May 2, 2017

#173-5sqrt(2607)#

Explanation:

For a vector #vec X=((x_1),(x_2),(x_3))#, its magnitude is #||vec X||=sqrt(x_1^2+x_2^2+x_3^2)#. For two vectors #vec X=((x_1),(x_2),(x_3))# and #vec Y=((y_1),(y_2),(y_3))#, their dot product is #vec X*vec Y=x_1y_1+x_2y_2+x_3y_3#.

From the above, #vec A*vec B=7*28+ -5*6+1*7=173#. The magnitude of #vec A=||vec A||=sqrt(7^2+(-5)^2+1^2)=sqrt(75)=5sqrt(3)#. The magnitude of #vec B=||vec B||=sqrt(28^2+6^2+7^2)=sqrt(869)#.

Therefore, #vec A*vec B-||vec A||||vec B||=173-5sqrt(3)sqrt(869)=173-5sqrt(2607)#.