If A and B are 2x2 matrices with det(A)=3 and det(B)=2, what is det((3A^-1)(B^T))?

1 Answer
Sep 18, 2017

# det((3bb(A)^-1)(bb(B)^T)) = 6 #

Explanation:

We have:

# det(bb(A)) = 3 #
# det(bb(B)) = 2 #

We will need the following properties of determinants:

  1. # det(bb(M^(-1))) = 1/det(bb(M)) #
  2. # det(bb(M^(T))) = det(bb(M)) #
  3. If one row of #bb(M)# is multiplied by #lamda# to produce a matrix #bb(N)#, then #det(bb(N))= lamda det(bb(M))#
  4. # det(bb(M)bb(N)) = det(bb(M)) \ det(bb(N)) \ \ # where #bb(M),bb(N)# same dimension.

Also not that as a corollary, if we multiply a matrix by a constant, #lamda#, then every element (and therefore every row) gets multiplied by that number, so that using the third property we can factor out a factor of #lamda^m# where #m# is dimension of the matrix.

So:

# det((3bb(A)^-1)(bb(B)^T)) = det(3bb(A)^-1) \ det(bb(B)^T) \ \ # (property 4)
# " " = det(3bb(A)^-1) \ det(bb(B)) \ \ # (property 2)
# " " = 3^2det(bb(A)^-1) \ det(bb(B)) \ \ # (#A \ 2 xx2#)
# " " = 9 1/det(bb(A)) \ det(bb(B)) \ \ # (property 1)
# " " = 9 xx 1/3 xx 2 #
# " " = 6 #