If #D=int_a^b(sin(kx)+2)dx# where #b=a+4# and #k# is unknown, then #D# must be greater than _____ and less than ______?
1 Answer
Approximately, we have:
#4 lt D lt 12 #
Explanation:
We have:
# D = int_a^b \ sin(kx)+2 \ dx #
But also, we have
# D = int_a^(a+4) \ sin(kx)+2 \ dx #
# \ \ \ = [-1/kcos(kx)+2x]_a^(a+4) #
# \ \ \ = (-1/kcos(ak+4k)+2a+8) - (-1/kcos(2k)+2a) #
# \ \ \ = -1/kcos(ak+4k)+2a+8 +1/kcos(ak)-2a #
# \ \ \ = (cos(ak)-cos(ak+4k))/k+8 #
So we have a function of
# D(a,k) = (cos(ak)-cos(ak+4k))/k+8 #
Now, we can use the trigonometric identity:
# cosA-cosB -= -2sin((A+B)/2)sin((A-B)/2) #
Or, Equivalently:
# cosB-cosA -= 2sin((A+B)/2)sin((A-B)/2) #
With
# D(a,k) = (2sin((ak+4k+ak)/2)sin((ak+4k-ak)/2))/k + 8 #
# \ \ \ \ \ \ \ \ \ \ \ \ = (2sin((2ak+4k)/2)sin((4k)/2))/k + 8 #
# \ \ \ \ \ \ \ \ \ \ \ \ = (2sin(ak+2k)sin(2k))/k + 8 #
As this is a function of