If #f(x)=4x+1# and #g(x)=x^2-5#, what is #(f*g)(4)#?

1 Answer
Sep 14, 2016

#(f*g)(4)=187#

Explanation:

As #f(x)=4x+1# and #g(x)=x^2-5#, substituting #x# with #g(x)# in #f(x)#, we get

#(f*g)(x)=(4x+1)(x^2-5)=4x xx x^2-4x xx5+x^2-5#

= #4x^3+x^2-20x-5#

Hence #(f*g)(4)=4xx4^3+4^2-20xx4-5#

= #4xx64+16-80-5#

= #256+16-80-5=187#