If #f(x) = 8 - 3|x+2|#, what is #f(-6)#?

1 Answer
Jul 30, 2017

See a solution process below:

Explanation:

To find #f(-6)# substitute #color(red)(-6)# for each and every occurrence of #color(red)(x)# in #f(x)# and calculate the result:

#f(color(red)(x)) = 8 - 3abs(color(red)(x) + 2)# becomes:

#f(color(red)(-6)) = 8 - 3abs(color(red)(-6) + 2)#

#f(color(red)(-6)) = 8 - 3abs(-4)#

#f(color(red)(-6)) = 8 - (3 * 4)#

#f(color(red)(-6)) = 8 - 12#

#f(color(red)(-6)) = -4#