If #f(x) = x^2-2x# and #g(x) = 6x+4#, for which value of #x# does #(f+g)(x)=0#?
1 Answer
Jul 16, 2017
Explanation:
#(f+g)(x)=f(x)+g(x)#
#rArrf(x)+g(x)#
#=x^2-2x+6x+4#
#=x^2+4x+4#
#"to solve "x^2+4x+4=0#
#"factorise by grouping"#
#x^2+2x+2x+4=0larr" split the x-term"#
#color(red)(x)(x+2)color(red)(+2)(x+2)=0#
#"factor out "(x+2)#
#(x+2)(color(red)(x+2))=0#
#rArr(x+2)^2=0#
#rArrx=-2" with multiplicity 2"#