If #f(x) = x^2-2x# and #g(x) = 6x+4#, for which value of #x# does #(f+g)(x)=0#?

1 Answer
Jul 16, 2017

#x=-2#

Explanation:

#(f+g)(x)=f(x)+g(x)#

#rArrf(x)+g(x)#

#=x^2-2x+6x+4#

#=x^2+4x+4#

#"to solve "x^2+4x+4=0#

#"factorise by grouping"#

#x^2+2x+2x+4=0larr" split the x-term"#

#color(red)(x)(x+2)color(red)(+2)(x+2)=0#

#"factor out "(x+2)#

#(x+2)(color(red)(x+2))=0#

#rArr(x+2)^2=0#

#rArrx=-2" with multiplicity 2"#