If the roots of the equation #ax^2+2bx+c=0# are real and distinct then find the nature of the roots of the equation #(a+c)(ax^2+2bx+c) = 2(ac - b^2)(x^2+1)#?
1 Answer
has a Complex conjugate pair of non-Real zeros.
Explanation:
Discriminant
The discriminant
The sign of the discriminant determines the kind of zeros the quadratic has:
#Delta > 0# : Two distinct Real zeros.#Delta = 0# : One repeated Real zero.#Delta < 0# : A Complex conjugate pair of non-Real zeros.
Solution
The discriminant of
#Delta_1 = (2b)^2-4ac = 4(b^2-ac)#
Since
#b^2-ac > 0#
Let
Given:
#(a+c)(ax^2+2bx+c) = 2(ac-b^2)(x^2+1)#
Expand and rearrange into standard form:
#(a^2-ac+2b^2)x^2+2b(a+c)x+(c^2-ac+2b^2) = 0#
This has discriminant:
#Delta_2 = (2b(a+c))^2-4(a^2-ac+2b^2)(c^2-ac+2b^2)#
#=4(b^2(a+c)^2-(a^2-ac+2b^2)(c^2-ac+2b^2))#
#=4((ac+k)(a+c)^2-(a^2+ac+2k)(c^2+ac+2k))#
#=4(color(red)(cancel(color(black)(ac(a+c)^2)))+k(a+c)^2-color(red)(cancel(color(black)(ac(a+c)^2)))-2k(a+c)^2-4k^2)#
#=4(-k(a+c)^2-4k^2) < 0#
So:
#(a+c)(ax^2+2bx+c) = 2(ac-b^2)(x^2+1)#
has a Complex conjugate pair of non-Real zeros.