If #omega#(not equal to #1#) is a cube root of unity,and #(1+omega)^7 = A+Bomega#. Then find #(A,B)# ?
1 Answer
Mar 27, 2018
Explanation:
Note that:
#0 = omega^3-1 = (omega-1)(omega^2+omega+1)#
So since
#omega^2+omega+1 = 0#
So:
#(1 + omega)^6 = (-omega^2)^6 = omega^12 = (omega^3)^4 = 1#
So:
#(1+omega)^7 = (1+omega)^6(1+omega) = 1+omega#
So