If #x=3+sqrt8#, what is the value of #x^2+1/x^2#?

2 Answers
Jun 17, 2017

See a solution process below:

Explanation:

To find the value of the expression in the problem we need to substitute #color(red)(3 + sqrt(8))# for each occurrence of #color(red)(x)# in the expression and then simplify the resulting expression:

#color(red)(x)^2 + 1/color(red)(x)^2# become:

#color(red)((3 + sqrt(8)))^2 + 1/color(red)((3 + sqrt(8)))^2#

We can use this rule to square the terms:

#(a + b)^2 = a^2 + 2ab + b^2#

Substituting #3# for #a# and substituting #sqrt(8)# for #b# gives:

#(3 + sqrt(8))^2 => 3^2 + (2 * 3 * sqrt(8)) + sqrt(8)^2 =>#

#9 + 6sqrt(8) + 8 =>#

#17 + 6sqrt(8)#

We can substitute this for both occurrences of #color(red)((3 + sqrt(8)))^2# giving:

#17 + 6sqrt(8) + 1/(17 + 6sqrt(8))#

We can put the term on the left over a common denominator so we can add the fractions giving:

#((17 + 6sqrt(8))/(17 + 6sqrt(8))) xx (17 + 6sqrt(8)) + 1/(17 + 6sqrt(8)) =>#

#(17 + 6sqrt(8))^2/(17 + 6sqrt(8)) + 1/(17 + 6sqrt(8))#

We can square the numerator of the fraction on the left using the same rule giving:

#(17^2 + (2 * 17 * 6sqrt(8)) + (6sqrt(8))^2)/(17 + 6sqrt(8)) + 1/(17 + 6sqrt(8)) =>#

#(289 + 2046sqrt(8) + (36 * 8))/(17 + 6sqrt(8)) + 1/(17 + 6sqrt(8)) =>#

#(289 + 2046sqrt(8) + 288))/(17 + 6sqrt(8)) + 1/(17 + 6sqrt(8)) =>#

#(577 + 2046sqrt(8))/(17 + 6sqrt(8)) + 1/(17 + 6sqrt(8)) =>#

#(577 + 2046sqrt(8) + 1)/(17 + 6sqrt(8)) =>#

#(578 + 2046sqrt(8))/(17 + 6sqrt(8))#

Jun 17, 2017

#frac(577 + 408 sqrt(2))(17 + 12 sqrt(2))#

Explanation:

We have: #x = 3 + sqrt(8)#

Squaring both sides of the equation:

#Rightarrow x^(2) = (3 + sqrt(8))^(2)#

#Rightarrow x^(2) = (3)^(2) + 2 cdot 3 cdot sqrt(8) + (sqrt(8))^(2)#

#Rightarrow x^(2) = 9 + 6 sqrt(8) + 8#

#Rightarrow x^(2) = 17 + 6 cdot 2 sqrt(2)#

#Rightarrow x^(2) = 17 + 12 sqrt(2)#

#therefore x^(2) + frac(1)(x^(2)) = 17 + 12 sqrt(2) + frac(1)(17 + 12 sqrt(2))#

#Rightarrow x^(2) + frac(1)(x^(2)) = frac((17 + 12 sqrt(2))^(2) + 1)(17 + 12 sqrt(2))#

#Rightarrow x^(2) + frac(1)(x^(2)) = frac((17)^(2) + 2 cdot 17 cdot 12 sqrt(2) + (12 sqrt(2))^(2) + 1)(17 + 12 sqrt(2))#

#Rightarrow x^(2) + frac(1)(x^(2)) = frac(289 + 408 sqrt(2) + 288)(17 + 12 sqrt(2))#

#Rightarrow x^(2) + frac(1)(x^(2)) = frac(577 + 408 sqrt(2))(17 + 12 sqrt(2))#