If #x=-3# what is the value of #(x^2-1)/(x+1)#?

1 Answer
May 29, 2018

See a solution process below:

Explanation:

To find the value of the expression when #x = -3# substitute #color(red)(-3)# for each occurrence of #color(red)(x)# in the expression and then calculate the result:

#(color(red)(x)^2 - 1)/(color(red)(x) + 1)# becomes:

#((color(red)(-3))^2 - 1)/(color(red)(-3) + 1) =>#

#(9 - 1)/-2 =>#

#8/-2 =>#

#-4#