#int_(-a)^adx/((a^2+x^2)sqrt((2a^2+x^2)))=?#

1 Answer
Feb 5, 2018

# int_(-a)^(a) \ 1/((a^2+x^2)sqrt(2a^2+x^2)) \ dx = pi/(3a^2)#

Explanation:

We seek the definite integral:

# I = int_(-a)^(a) \ 1/((a^2+x^2)sqrt(2a^2+x^2)) \ dx #

For simplicity, consider the indefinite integral:

# J = int \ 1/((a^2+x^2)sqrt(2a^2+x^2)) \ dx #

Let us perform a substitution, where we define:

# x = sqrt(2)a tanu => dx/(du) = sqrt(2)a sec^2 u #

Then Substituting we get:

# J = int \ (sqrt(2)a sec^2 u)/((a^2+2a^2tan^2u)sqrt(2a^2+2a^2tan^2u)) \ du #

# \ \ = int \ (sqrt(2)a sec^2 u)/(a^2(1+2tan^2u)sqrt(2a^2(1+tan^2u))) \ du #

# \ \ = int \ (sqrt(2)a sec^2 u)/(a^2(1+2tan^2u) \ sqrt(2)a sqrt(1+tan^2u)) \ du #

# \ \ = 1/a^2 \ int \ (sec u)/(1+2tan^2u) \ du #

# \ \ = 1/a^2 \ int \ (sec u)/(1+2(sec^2u-1)) \ du #

# \ \ = 1/a^2 \ int \ (sec u)/(2sec^2u-1) \ du #

# \ \ = 1/a^2 \ int \ (1/(cos u))/(2/cos^2u-1) \ du #

# \ \ = 1/a^2 \ int \ (1/(cos u))/((2-cos^2u)/cos^2u) \ du #

# \ \ = 1/a^2 \ int \ (cos u)/(2-cos^2u) \ du #

# \ \ = 1/a^2 \ int \ (cos u)/(2-(1-sin^2u)) \ du #

# \ \ = 1/a^2 \ int \ (cos u)/(1+sin^2u) \ du #

And we can perform a second substitution, where we define:

# v=sinu => (dv)/(du) = cosu #

Then Substituting we get:

# J = 1/a^2 \ int \ (1)/(1+v^2) \ dv #

Which is a standard integral, and so integrating we get:

# J = 1/a^2 \ arctan(v) + C #

Then, we restore the earlier #v# substitution:

# J = 1/a^2 \ arctan(sinu) + C #

And prior to restoring the #u# substitution we use the identity

# \ \ \ \ \ 1 + tan^2u -= sec^2 u #
# :. 1 + (x/(sqrt(2)a))^2 = 1/(1-sin^2u) #
# :. 1 + x^2/(2a^2) = 1/(1-sin^2u) #
# :. (2a^2 + x^2)/(2a^2) = 1/(1-sin^2u) #
# :. 1-sin^2u = (2a^2)/(2a^2 + x^2) #
# :. sin^2u = 1-(2a^2)/(2a^2 + x^2) #
# :. sin^2u = (2a^2 + x^2-2a^2)/(2a^2 + x^2) #
# :. sin^2u = (x^2)/(2a^2 + x^2) #
# sinu = sqrt((x^2)/(2a^2 + x^2)) #

Which now allows us to restore the #u# substitution:

# J = 1/a^2 \ arctan( x/(sqrt(2a^2 + x^2)) ) + C #

So now we can evaluate the definite integral:

# I = [1/a^2 \ arctan( x/(sqrt(2a^2 + x^2)) )]_(-a)^(a)#

# \ \ = 1/a^2 { arctan( a/(sqrt(2a^2 + a^2))) - arctan( (-a)/(sqrt(2a^2 + (-a)^2))) }#

# \ \ = 1/a^2 { arctan( 1/sqrt(3)) - arctan( -1/sqrt(3)) }#

# \ \ = 1/a^2 { pi/6 - (-pi/6) }#

# \ \ = 1/a^2 pi/3#

# \ \ = pi/(3a^2)#