Integral of dx/sqrt(x^2 -2x-8) ?

1 Answer
Feb 22, 2018

#ln|x-1+sqrt((x-1)^2-9)|+C#

Explanation:

Complete the square for #x^2-2x-8#:

#(x^2-2x)-8=0#

#(x^2-2x)=8#

#(x^2-2x+(2/2)^2)=8+(2/2)^2#

#(x^2-2x+1)=8+1#

#(x^2-2x+1)=9#

#(x-1)^2-9=0#

Rewrite the integral using the completed square:

#int1/sqrt((x-1)^2-9)dx#

#u=x-1#

#du=dx#

Rewrite the integral using the above substitution:

#int1/sqrt(u^2-9)du#

We can use trig substitution here:

#u=3sec(theta)#

#du=3sec(theta)tan(theta)d theta#

Rewrite the integral using the trig substitution:

#int(3sec(theta)tan(theta))/sqrt(9(sec^2(theta)-1))d theta#

#int(cancel3sec(theta)tan(theta))/(cancel3sqrt(sec^2(theta)-1))d theta#

#int(sec(theta)tan(theta))/(sqrt(sec^2(theta)-1))d theta#

Recall the identity:

#1+tan^2(theta)=sec^2(theta)#

Therefore:

#sec^2(theta)-1=tan^2(theta)#

Rewrite the integral with the identity:
#int(sec(theta)tan(theta))/(sqrt(tan^2(theta)))d theta#

#int(sec(theta)canceltan(theta))/(canceltan(theta))d theta#

#int(sec(theta)d theta#

#ln|sec(theta)+tan(theta)|+C#

#u=3sec(theta)#, so #sec(theta)=u/3#

If #sec(theta)=u/3#, #sec^2(theta)=u^2/9#

Using the aforementioned identity:

#tan^2(theta)=sec^2(theta)-1#

#tan^2(theta)=u^2/9-1#

#tan(theta)=sqrt(u^2/9-1)#

Rewrite our integral in terms of #u:#

#ln|u/3+sqrt((u^2-9)/9)|+C#

#ln|u/3+sqrt((u^2-9))/3|+C#

#ln|u+sqrt(u^2-9)|-ln|3|+C# using logarithmic rules for division.

#ln|3|=ln(3)#, and this just becomes part of our constant #C# because it's a constant value.

#ln|u+sqrt(u^2-9)|+C#

Rewrite in terms of #x:#

#ln|x-1+sqrt((x-1)^2-9)|+C#