Integral of sqrt(x+2)/(x+1) dx?

1 Answer
Feb 22, 2018

#int sqrt(x+2)/(x+1)dx = 2sqrt(x+2) + 2ln abs(sqrt(x+2)-1)-ln abs(x+1)+C#

Explanation:

Substitute #t=sqrt(x+2)#, #x=t^2-2#, #dx=2tdt#:

#int sqrt(x+2)/(x+1)dx = 2int (t^2dt)/(t^2-1)#

Write the numerator as #t^2 = t^2-1+1# to separate the entire part:

#int sqrt(x+2)/(x+1)dx = 2int ((t^2-1+1)dt)/(t^2-1) = 2int dt + 2int (dt)/(t^2-1)#

#int sqrt(x+2)/(x+1)dx = 2int ((t^2-1+1)dt)/(t^2-1) = 2t +2 int (dt)/(t^2-1)#

Solve the resulting integral decomposing in partial fractions:

#1/(t^2-1) = 1/((t-1)(t+1)) = A/(t-1)+B/(t+1)#

#1/(t^2-1) = (A(t+1)+B(t-1))/(t^2-1)#

#1 = (A+B)t+(A-B)#

#{(A+B=0),(A-B=1):}#

#{(A=1/2),(B=-1/2):}#

#int (dt)/(t^2-1) = 1/2 int (dt)/(t-1) -1/2 int (dt)/(t+1)#

#int (dt)/(t^2-1) = 1/2 (ln abs(t-1) -ln abs(t+1)) + C #

Put the partial solutions together:

#int sqrt(x+2)/(x+1)dx = 2t +ln abs(t-1) -lnabs(t+1) + C #

and undo the substitutions:

#int sqrt(x+2)/(x+1)dx = 2sqrt(x+2) + ln abs(sqrt(x+2)-1)-ln abs(sqrt(x+2)+1)+C#

Using the properties of logarithms we can write the solution also as:

#int sqrt(x+2)/(x+1)dx = 2sqrt(x+2) + ln abs((sqrt(x+2)-1)/(sqrt(x+2)+1))+C#

and rationalizing the denominator of the argument of the logarithm:

#int sqrt(x+2)/(x+1)dx = 2sqrt(x+2) + ln abs((sqrt(x+2)-1)/(sqrt(x+2)+1) (sqrt(x+2)-1)/(sqrt(x+2)-1))+C#

#int sqrt(x+2)/(x+1)dx = 2sqrt(x+2) + ln abs((sqrt(x+2)-1)^2/(x+2-1))+C#

#int sqrt(x+2)/(x+1)dx = 2sqrt(x+2) + ln abs((sqrt(x+2)-1)^2/(x+1))+C#

#int sqrt(x+2)/(x+1)dx = 2sqrt(x+2) + 2ln abs(sqrt(x+2)-1)-ln abs(x+1)+C#