Integral of the trigonometric functions:? B-) #int_0^pisin^2x*cos^4xdx#

1 Answer
Apr 24, 2018

#x/16+1/64sin(2x)-1/64sin(4x)-1/192sin(6x)+C#

Explanation:

Using the double angle formulas

#sin(2x) = 2 sin x cos x#
#cos(2x) = 2cos^2x-1=1-2sin^2x#

we rewrite the integrand as

# sin^2 x cos^4x = (sin x cos x)^2cos^2x#
#qquad = (1/2sin(2x))^2 1/2(1+cos(2x))#
#qquad = 1/8 sin^2(2x) (1+cos(2x))#

Thus, the integral is

# int sin^2 x cos^4x = 1/8 int sin^2(2x) (1+cos(2x))dx#
#qquad = 1/8 int sin^2(2x)dx+1/8int sin^2(2x) cos(2x)dx#
#qquad = 1/16 int (1-cos(4x))dx#
#qquadquad +1/8 int sin^2(2x) 1/2d(sin(2x))#
#qquad = x/16-1/64sin(4x)+1/48sin^3(2x)+C#

Using the triple angle formula

#sin^3x = 1/4(3sinx-sin(3x))#

this result can be recast in the form

# x/16-1/64sin(4x)+1/48[1/4(3sin(2x)-sin(6x))]+C#
#qquad = x/16+1/64sin(2x)-1/64sin(4x)-1/192sin(6x)+C#