Integrate #intsqrt(9-x^2)"d"x#?

1 Answer
May 24, 2018

#intsqrt(9-x^2)"d"x=1/2(xsqrt(9-x^2)+9arcsin(x/3))+"c"#

Explanation:

#intsqrt(9-x^2)"d"x=intsqrt(9(1-(x/3)^2))"d"x=3intsqrt(1-(x/3)^2)"d"x#

Now let #sinu=x/3# and #cosu"d"u=1/3dx#

So

#3intsqrt(1-(x/3)^2)"d"x=9intcos^2u"d"u=9/2int1+cos2u"d"u#

#=9/2(u+1/2sin2u)+"c"=1/2(9u+9sinucosu)+"c"#

We now substitute back #u=arcsin(x/3)#

#intsqrt(9-x^2)"d"x=1/2(9arcsin(x/3)+xsqrt(9-x^2))+"c"#