Integrate the following using infinite #\bb\text(series)# ?

(a) #\int(\arctan(4x))/(x^-7)dx#

1 Answer
May 10, 2018

#int arctan(4x)/x^(-7)dx = sum_(n=0)^oo (-1)^n 2^(4n+2)/((2n+1)(2n+9) )x^(2n+9) +C#

Explanation:

Start from:

#arctan(4x) = int_0^(4x) dt/(1+t^2)#

Expand now the integrand using the geometric series:

#arctan(4x) = int_0^(4x) sum_(n=0)^oo (-1)^nt^(2n)dt#

for #abs (4x) < 1# the series is absolutely convergent and we can integrate term by term:

#arctan(4x) = sum_(n=0)^oo (-1)^nint_0^(4x) t^(2n)dt#

#arctan(4x) = sum_(n=0)^oo (-1)^n (4x)^(2n+1)/(2n+1)#

#arctan(4x) = sum_(n=0)^oo (-1)^n 2^(4n+2)/(2n+1)x^(2n+1)#

Dividing by #x^(-7)# means multiplying by #x^7# and we can do it again term by term:

#arctan(4x)/x^(-7) = sum_(n=0)^oo (-1)^n 2^(4n+2)/(2n+1)x^(2n+8)#

and integrating again term by term:

#int arctan(4x)/x^(-7)dx = sum_(n=0)^oo (-1)^n 2^(4n+2)/(2n+1)int x^(2n+8) dx#

#int arctan(4x)/x^(-7)dx = sum_(n=0)^oo (-1)^n 2^(4n+2)/((2n+1)(2n+9) )x^(2n+9) +C#