Is #f(x)=-sqrt(e^x -x^3-2x # concave or convex at #x=-1 #?

1 Answer
May 15, 2017

#f(x)# is convex at #x=-1#.

Explanation:

#f(x)=- sqrt(e^x-x^3-2x) = -(e^x-x^3-2x)^(1/2)#

Determine the concavity of a graph by finding the second derivative of the function, and the sign of #f"(-1)# represents the concavity.

Differentiate using the chain rule:
#f'(x)=-1/2(e^x-x^3-2x)^(-1/2)(e^x-3x^2-2)#

#f'(x)= frac{-(e^x-3x^2-2)}{2(e^x-x^3-2x)}#

Differentiate using the quotient rule:
#f''(x) = frac{-2(e^x-x^3-2x)(e^x-6x)+(e^x-3x^2-2)^2(2)}{4(e^x-x^3-2x)^2}#

Plug in #x=-1#:
#f''(-1)= frac{-2(1/e +1+2)(1/e +6)+(1/e -3 -2)^2(2)}{4(1/e +3)^2}#

This value is negative because the numerator is negative while the denominator is positive.

Therefore, #f(x)# is convex at #x=-1#.