Is it possible to find the following limit without using l'Hôpital's rule?

#lim_(x→pi/4) (cosx-1/sqrt2)/(x-π/4)#

2 Answers
Oct 31, 2017

One way is to let #u = x - pi/4#

Explanation:

So we want #lim_(urarr0)(cos(u+pi/4)-1/sqrt2)/u#

Expand #cos(u+pi/4)#, regroup and use the fundamental trigonometric limits.

#lim_(urarr0)(cos(u+pi/4)-1/sqrt2)/u = lim_(urarr0)(1/sqrt2cosu-1/sqrt2sinu-1/sqrt2)/u#

# = lim_(urarr0)(1/sqrt2((cosu-1)/u)-1/sqrt2(sinu/u))#

# = 1/sqrt2(0)-1/sqrt2(1) = -1/sqrt2#

Oct 31, 2017

#-1/sqrt2#

Explanation:

Making #h = x-pi/4# and using the definition of differential, we have

#lim_(x->pi/4)(cosx - 1/sqrt2)/(x-pi/4) equiv lim_(h->0)(cos(pi/4+h)-cos(pi/4))/h = -sin(pi/4) = -1/sqrt2#