Is there an error in this question: Show that #((del^2Q)/(delbeta^2))_V = bar(E^2) - barE^2# (the variance of the energy)? #beta# is only a function of temperature #T#, not a function of volume #V#. #E# is a function of only #V#.
Relevant expressions:
#barE = sum_(i=1)^(N) p_iE_i# , the ensemble average energy
#bar(E^2) = sum_(i=1)^(N) p_iE_i^2# , the ensemble average squared energy
#barE^2 = (sum_(i=1)^(N) p_iE_i)^2# , the square of the ensemble average energy
#p_i = (e^(-betaE_i))/Q# , the distribution law for the canonical ensemble
#Q = sum_(i=1)^(N) e^(-betaE_i)# , the canonical partition function
Relevant expressions:
1 Answer
My professor answered back and said that there was. It was supposed to be
#bar(E^2) - barE^2#
#= sum_(i=1)^(N)p_iE_i^2 - (sum_(i=1)^(N)p_iE_i)^2#
#= 1/Qsum_(i=1)^(N)(E_i^2e^(-betaE_i)) - (1/Qsum_(i=1)^(N)E_ie^(-betaE_i))^2#
Working backwards from the chain rule, we get:
#= 1/Q((del^2Q)/(delbeta^2))_V - (1/Q((delQ)/(delbeta))_V)^2#
#= 1/Q((del^2Q)/(delbeta^2))_V - 1/Q^2((delQ)/(delbeta))_V^2#
Working backwards from the product rule, it is difficult but we recognize that
#(del)/(delbeta)[1/Q((delQ)/(delbeta))_V]#
#= 1/Q((del^2Q)/(delbeta^2))_V + ((delQ)/(delbeta))_V(-1/Q^2)((delQ)/(delbeta))_V#
#= 1/Q((del^2Q)/(delbeta^2))_V -1/Q^2((delQ)/(delbeta))_V^2#
Hence, what we really have is:
#color(blue)(bar(E^2) - barE^2) = 1/Q((del^2Q)/(delbeta^2))_V - 1/Q^2((delQ)/(delbeta))_V^2#
#= (del)/(delbeta)[1/Q((delQ)/(delbeta))_V]#
#= (del)/(delbeta)[((dellnQ)/(delbeta))_V]#
#= color(blue)(((del^2lnQ)/(delbeta^2))_V)#