Let f be a continuous function: a) Find #f(4) if ∫_0^(x^2) f(t) dt = x sin πx# for all #x#. b) Find #f(4) if ∫_0^ f(x)t^2 dt = x sin πx# for all #x#?
1 Answer
May 30, 2016
a)
Explanation:
a) Differentiate both sides.
Through the Second Fundamental Theorem of Calculus on the left-hand side and the product and chain rules on the right-hand side, we see that differentiation reveals that:
#f(x^2)*2x=sin(pix)+pixcos(pix)#
Letting
#f(4)*4=sin(2pi)+2picos(2pi)#
#f(4)*4=0+2pi*1#
#f(4)=pi/2#
b) Integrate the interior term.
#int_0^f(x)t^2dt=xsin(pix)#
#[t^3/3]_0^f(x)=xsin(pix)#
Evaluate.
#(f(x))^3/3-0^3/3=xsin(pix)#
#(f(x))^3/3=xsin(pix)#
#(f(x))^3=3xsin(pix)#
Let
#(f(4))^3=3(4)sin(4pi)#
#(f(4))^3=12*0#
#f(4)=0#