Mathematical induction question 1E plz I am stuck?

 hase 12 spec book

2 Answers
Feb 11, 2018

# \ #

# "Please see the proof below." #

Explanation:

# \ #

# "Ok, let's do the induction." #

# "Want to prove by induction:" #

# \qquad \qquad \qquad \quad [ (3, 1), (0, 2) ]^n \ = \ [ ( 3^n, 3^n - 2^n ), ( 0, 2^n ) ], \qquad \qquad "for all" \ n \in ZZ^+. #

# \ #

# "Proof." #

# "1) Basis Step:" \qquad \qquad \qquad "Verify result for" \ \ n = 1. #

# "LHS of result, at" \ n = 1: \qquad [ (3, 1), (0, 2) ]^1 \ = \ [ (3, 1), (0, 2) ]; \qquad \qquad \qquad\qquad \qquad (1) #

# "RHS of result at" \ n = 1:" #

# \qquad \qquad \qquad \qquad [ ( 3^1, 3^1 - 2^1 ), ( 0, 2^1 ) ] \ = \ [ (3, 3-2), (0, 2) ] \ = \ [ (3, 1), (0, 2) ]. \qquad \qquad \qquad (2) #

# "As the result in (1) and the result in (2) are equal, we have" #
# "now proven the desired result at" \ \ n = 1. \ "The Basis Step has" #
# "been completed." #

# "2) Induction Step:" #
# "Assume the result is true for" \ n, "show that it's true for" \ n + 1. #

# \mbox{Assume:} \qquad \qquad \qquad \qquad [ (3, 1), (0, 2) ]^n \ = \ [ ( 3^n, 3^n - 2^n ), ( 0, 2^n ) ]. \qquad \qquad \qquad \qquad \qquad \quad (3) #

# \mbox{Using this (if we want), now show:} #

# \qquad \qquad \qquad \qquad \qquad [ (3, 1), (0, 2) ]^{ n + 1 } \ = \ [ ( 3^{ n + 1 }, 3^{ n + 1 } - 2^{ n + 1 } ), ( 0, 2^{ n + 1 } ) ]. \qquad \qquad \qquad \quad \ (4) #

# \mbox{Ok. Let's start working to try to show (4): #

# \qquad \qquad \qquad \qquad \qquad \ [ (3, 1), (0, 2) ]^{ n + 1 } \ = \ [ (3, 1), (0, 2) ]^1 [ (3, 1), (0, 2) ]^n #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ [ (3, 1), (0, 2) ] [ (3, 1), (0, 2) ]^n #

# "By our assumption from (3), we can continue this as:" #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ [ (3, 1), (0, 2) ] [ ( 3^n, 3^n - 2^n ), ( 0, 2^n ) ] #

# "Multiplying out, and simplfying:" #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ [ ( 3 \cdot 3^n, 3 (3^n - 2^n ) + 1 \cdot 2^n ), ( 0, 2 \cdot 2^n ) ] #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ [ ( 3 \cdot 3^{ n + 1 }, 3 \cdot 3^{ n } - 3 \cdot 2^n + 2^n ), ( 0, 2 \cdot 2^n ) ] #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ [ ( 3^{ n + 1 }, 3^{ n + 1 } - 2^n ( 3 - 1 ) ), ( 0, 2^{ n + 1 } ) ] #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ [ ( 3^{ n + 1 }, 3^{ n + 1 } - 2^n ( 2 ) ), ( 0, 2^{ n + 1 } ) ] #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ [ ( 3^{ n + 1 }, 3^{ n + 1 } - 2^{ n + 1 } ), ( 0, 2^{ n + 1 } ) ]. #

# "Thus, from the last chain of equations, we have now shown:" #

# \qquad \qquad \qquad \qquad [ (3, 1), (0, 2) ]^{ n + 1 } \ = \ [ ( 3^{ n + 1 }, 3^{ n + 1 } - 2^{ n + 1 } ), ( 0, 2^{ n + 1 } ) ]. #

# "This result, which we have just shown, is (4) -- what we wanted" #
# "to show in this Step -- the Induction Step." #

# "Thus we have completed the Induction Step." #

# "Now having completed both the Basis Step and the Induction" #
# "Step:" #
# \qquad \qquad \qquad "we have completed the Proof by Induction." #

# "So we have proved the desired result:" #

# \qquad \qquad \qquad \quad [ (3, 1), (0, 2) ]^n \ = \ [ ( 3^n, 3^n - 2^n ), ( 0, 2^n ) ], \qquad \qquad "for all" \ n \in ZZ^+. #

Feb 11, 2018

See below.

Explanation:

#1+nx le (1+x)^n#

for #n=1# follows #1+x le 1+x# true

now supposing that #1+nx le (1+x)^n# we get

#1+(n+1) x le (1+x)^(n+1)# or

#1+nx + x le (1+x)^n(1+x)# or

#1+n x + x le (1+x)^n + x(1+x)^n# or as a consequence of #1+nx le (1+x)^n# we get

#x le x(1+x)^n# which is true for all #x > -1#

concluding, by finite induction, the assertion is true.

NOTE:

If #-1 < x < 0# we have also #x le x(1+x)^n# because #0 < (1+x)^n < 1#