Please help to simplify as far as possible? #(cosA)/(1-sinA) -tan A#

3 Answers
Feb 26, 2018

#1/cos(x)#

Explanation:

#tan(x)=sin(x)/cos(x)#
#sin^2(x)+cos^2(x)=1#
#cos^2(x)/(cos(x)(1-sin(x)))-sin(x)(1-sin(x))/(cos(x)(1-sin(x)))#
#=(cos^2(x)-sin(x)+sin^2(x))/(cos(x)(1-sin(x)))#
#=cancel(1-sin(x))/(cos(x)(cancel(1-sin(x))))#
#=1/cos(x)#

Feb 26, 2018

#secA#

Explanation:

#cosA/(1-sinA)-tanA=cosA/(1-sinA)-sinA/cosA =(cos^2A-sinA+sin^2A)/((1-sinA)cosA) =((color(red)(cos^2A+sin^2A)-sinA)/((1-sinA)cosA) =cancel(color(red)1-sinA)/(cancel((1-sinA))cosA)=1/cosA=secA#
Hint: #color(red)(cos^2A+sin^2A=1)#

Feb 26, 2018

#secA#

Explanation:

#"using the "color(blue)"trigonometric identities"#

#•color(white)(x)sin^2A+cos^2A=1#

#•color(white)(x)tanA=sinA/cosA" and "secA=1/cosA#

#rArrcosA/(1-sinA)-sinA/cosA#

#=(cos^2A-sinA(1-sinA))/(cosA(1-sinA)#

#=(cos^2A-sinA+sin^2A)/(cosA(1-sinA))#

#=(cancel((1-sinA)))/(cosAcancel((1-sinA))#

#=1/cosA=secA#