Points A and B are at #(8 ,2 )# and #(3 ,7 )#, respectively. Point A is rotated counterclockwise about the origin by #pi/2 # and dilated about point C by a factor of #3 #. If point A is now at point B, what are the coordinates of point C?
1 Answer
Feb 26, 2018
Explanation:
#"under a counterclockwise rotation about the origin of "pi/2#
#• " a point "(x,y)to(-y,x)#
#rArrA(8,2)toA'(-2,8)" where A' is the image of A"#
#rArrvec(CB)-color(red)(3)vec(CA')#
#rArrulb-ulc=3(ula'-ulc)#
#rArrulb-ulc=3ula'-3ulc#
#rArr2ulc=3ula'-ulb#
#color(white)(rArr2ulc)=3((-2),(8))-((3),(7))#
#color(white)(rArr2ulc)=((-6),(24))-((3),(7))=((-9),(17))#
#rArrulc=1/2((-9),(17))=((-9/2),(17/2))#
#rArrC=(-9/2,17/2)#