Prove that #cos((2pi)/9)*cos((4pi)/9)*cos((8pi)/9)=-1/8#?

1 Answer
Dec 19, 2017

We use formula #2cosAcosB=cos(A+B)+cos(A-B)#. For details see explanation.

Explanation:

#cos((2pi)/9)*cos((4pi)/9)*cos((8pi)/9)#

= #1/2cos((4pi)/9)[2cos((8pi)/9)cos((2pi)/9)]#

= #1/2cos((4pi)/9)[cos((8pi)/9+(2pi)/9)+cos((8pi)/9-(2pi)/9)]#

= #1/2cos((4pi)/9)[cos((10pi)/9)+cos((6pi)/9)]#

= #1/2cos((4pi)/9)[cos(pi+pi/9)+cos((2pi)/3)]#

= #1/2cos((4pi)/9)[-cos(pi/9)-1/2]#

= #-1/4cos((4pi)/9)-1/4[2cos((4pi)/9)cos(pi/9)]#

= #-1/4cos((4pi)/9)-1/4[cos((4pi)/9+pi/9)+cos((4pi)/9-pi/9)]#

= #-1/4cos((4pi)/9)-1/4[cos((5pi)/9)+cos((3pi)/9)]#

= #-1/4cos((4pi)/9)-1/4[cos(pi-(4pi)/9)+cos(pi/3)]#

= #-1/4cos((4pi)/9)-1/4[-cos((4pi)/9)+1/2]#

= #-1/4cos((4pi)/9)+1/4cos((4pi)/9)-1/8]#

= #-1/8#