Prove that integral of #sqrt(x^2+a^2)# is #x/2×(x^2+a^2)^(-1/2)+a^2/2×log|x+(x^2+a^2)^(-1/2)|+c#?

2 Answers
Feb 10, 2018

#int sqrt(x^2+a^2)*dx#

=#x/2*sqrt(x^2+a^2)+a^2/2*Ln(x+sqrt(x^2+a^2))+C#

Explanation:

#int sqrt(x^2+a^2)*dx#

After using #x=asinhu# and #dx=acoshu*du# transforms, this integral became

#int a^2*(coshu)^2*du#

=#a^2/2int (1+cos2hu)*du#

=#a^2/2*(u+1/2*sin2hu)+C_1#

=#a^2/2*u+a^2/4*sin2hu+C_1#

=#a^2/2*u+a^2/4*2sinhu*coshu+C_1#

=#a^2/2*u+a^2/2*sinhu*coshu+C_1#

After using #x=sinhu#, #sinhu=x/a#, u=#arcsin(x/a)=Ln((x+sqrt(x^2+a^2))/a) and #coshu=sqrt(x^2+a^2)/a# inverse transforms, I found

#int sqrt(x^2+a^2)*dx#

=#x/2*sqrt(x^2+a^2)+a^2/2*Ln((x+sqrt(x^2+a^2))/a)+C_1#

=#x/2*sqrt(x^2+a^2)+a^2/2*Ln(x+sqrt(x^2+a^2))+C#

Note: #C=C_1-Lna#

Feb 10, 2018

Please see a Proof in the Explanation.

Explanation:

Prerequisites : Integration by Parts (IBP) :

#intu*vdx=uintvdx-int{(du)/dx*intvdx}dx#.

Let, #I=intsqrt(x^2+a^2)dx=intsqrt(x^2+a^2)*1dx#.

We take :

#u=sqrt(x^2+a^2):.(du)/dx=1/(2sqrt(x^2+a^2))*2x=x/sqrt(x^2+a^2)#.

#v=1 rArr intvdx=x#.

#:.I=xsqrt(x^2+a^2)-int{x/sqrt(x^2+a^2)*x}dx#,

#=xsqrt(x^2+a^2)-int{x^2/sqrt(x^2+a^2)}dx#,

#=xsqrt(x^2+a^2)-int{(x^2+a^2)-a^2}/sqrt(x^2+a^2)}dx#,

#=xsqrt(x^2+a^2)-int{(x^2+a^2)/sqrt(x^2+a^2)-a^2/sqrt(x^2+a^2)}dx#,

#=xsqrt(x^2+a^2)-intsqrt(x^2+a^2)dx+a^2int1/sqrt(x^2+a^2)dx, or, #,

#I=xsqrt(x^2+a^2)-I+a^2ln|x+sqrt(x^2+a^2)|, i.e., #

# 2I=xsqrt(x^2+a^2)+a^2ln|x+sqrt(x^2+a^2)|#.

#rArr I=x/2sqrt(x^2+a^2)+a^2/2ln|x+sqrt(x^2+a^2)|+C#.