Show that #int_1^e(lnx)^2dx# = e - 2 ?

2 Answers
Mar 8, 2018

We want to show that:

# int_1^e \ (lnx)^2 \ dx = e - 2 #

If we consider the indefinite integral:

# I = int \ (lnx)^2 \ dx #

Then, we can then apply Integration By Parts:

Let # { (u,=ln^2x, => (du)/dx,=2lnx/x), ((dv)/dx,=1, => v,=x ) :}#

Then plugging into the IBP formula:

# int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx #

We have:

# int \ ln^2x \ 1 \ dx = (ln^2x)(x) - int \ (x)(2lnx/x) \ dx #
# :. I = xln^2x - 2 \ int \ lnx \ dx #

Let # { (u,=lnx, => (du)/dx,=1/x), ((dv)/dx,=1, => v,=x ) :}#

And, applying IBP to the second integral, we get:

# int \ (lnx)(1) \ dx = (lnx)(x) - int \ (x)(1/x) \ dx #
# :. int \ lnx \ dx = xlnx - x #

Combining these results we get:

# I = xln^2x - 2 (xlnx-x) + C #

So we can now evaluate the definite integral:

# int_1^e \ (lnx)^2 \ dx = [ xln^2x - 2 (xlnx-x) ]_1^e #
# " " = (eln^2e - 2 (elne-e)) - (ln^2 1 - 2 (ln1-1)) #

# " " = (e - 2 (e-e)) - (0 - 2 (0-1)) #

# " " = (e) - (2) #

# " " = e-2 \ \ \ # QED

Mar 8, 2018

See below

Explanation:

#int(lnx)^2dx=# lets use the "Integration by parts method"

Lets say #int(lnx)^2dx=intlnx·lnx·dx# and make the change

#u=lnx# and #dv=lnxdx#, then #du=1/xdx# and #v=intlnxdx#

Lets do the integral #intlnxdx# by the same method.

Lets say #u_1=lnx# and #dv_1=dx#. Hence we have

#intlnxdx=u_1v_1-intv_1du_1=xlnx-x+C=x(lnx-1)+C#

In our first case we had...#u=lnx# and #v=x(lnx-1)#

#int(lnx)^2dx=x·lnx·(lnx-1)-int1/x·x(lnx-1)dx= xlnx(lnx-1)-x(lnx-1)+x+c=x((lnx)^2-2lnx+2)+C=F(x)#

Applying Barrow's rule: #F(e)-F(1)=e(1^2-2·1+2)-1(0-0+2)=e-2#