Sinx/1+cosx+cosx/sinx=1/sinx?

2 Answers
May 17, 2018

#"see explanation"#

Explanation:

#"using the "color(blue)"trigonometric identity"#

#•color(white)(x)sin^2x+cos^2x=1#

#"consider the left side"#

#sinx/(1+cosx)+cosx/sinx#

#"express as a single fraction"#

#=(sin^2x+cosx(1+cosx))/((1+cosx)sinx)#

#=(sin^2x+cosx+cos^2x)/((1+cosx)sinx)#

#=cancel((1+cosx))/(cancel((1+cosx))sinx#

#=1/sinx=" right side"#

May 17, 2018

#1/sinx#

Explanation:

We have the following

#sinx/(1+cosx)+cosx/sinx=1/sinx#

After getting common denominators, we would get

#(sinx(sinx))/(sinx(1+cosx))+(cosx(1+cosx))/(sinx(1+cosx))=(1+cosx)/(sinx(1+cosx))#

#=>(sin^2x+cosx(1+cosx))/((sinx)(1+cosx))=(1+cosx)/(sinx(1+cosx))#

Further simplifying, we get

#(color(blue)(sin^2x+cos^2x)+cosx)/((1+cosx)(sinx))=(1+cosx)/(sinx(1+cosx))#

What I have in blue is the Pythagorean Identity, which just simplifies to #1#. Now, we have

#(1+cosx)/((1+cosx)(sinx))=(1+cosx)/(sinx(1+cosx))#

We have some terms to cancel:

#cancel((1+cosx))/(cancel((1+cosx))(sinx))=cancel((1+cosx))/(sinx cancel((1+cosx)))#

and we're just left with

#1/sinx=1/sinx#

We have essentially proven this "identity".

Hope this helps!