#color(red)((a)I=intsin^-1(2x)dx#
,
Let, #sin^-1 2x=t=>2x=sint=>x=1/2sint=>dx=1/2costdt#
#=>I=1/2int t*costdt...tou=t and v=cost#
#"Using "color(blue)"Integration by Parts :"#
#I=1/2[tsint-intsintdt]=1/2[tsint+cost]+c#
#I=1/2[tsint+sqrt(1-sin^2t)]+c#
Subst.back #t=sin^-1(2x)and sint=2x#
#color(red)(I=1/2[2x*sin^-1(2x)+sqrt(1-4x^2)]+c#
#color(violet)((b)I=intxln(3x)dx...tou=ln3x and v=x#
#"Using "color(blue)"Integration by Parts :"#
#I=ln(3x)*x^2/2-int1/(3x)xx3xxx^2/2dx#
#I=x^2/2ln(3x)-1/2intxdx=x^2/2ln(3x)-1/2(x^2/2)+c#
#=>color(violet)(I=x^2/2[ln3x-1/2]+c#
#color(orange)((c)intx^2 e^xdx...tou=x^2 and v=e^x#
#"Using "color(blue)"Integration by Parts :"#
#I=x^2e^x-int2xe^xdx=x^2e^x-2intxe^x#
#"Using "color(blue)"Integration by Parts :"#
#I=x^2e^x-2[xe^x-inte^xdx]#
#color(orange)(I=x^2e^x-2xe^x+2e^x+c#