Solve for #x#: #y= sqrt( (4x+1)/(3x-3))# ?
1 Answer
Nov 22, 2017
Explanation:
#"note that "sqrtaxxsqrta=(sqrta)^2=a#
#y=sqrt((4x+1)/(3x-3))#
#color(blue)"squaring both sides"#
#y^2=(sqrt((4x+1)/(3x-3)))^2#
#rArry^2=(4x+1)/(3x-3)#
#rArry^2(3x-3)=4x+1larrcolor(blue)"cross-multiplying"#
#rArr3xy^2-3y^2=4x+1#
#rArr3xy^2-4x=1+3y^2larrcolor(blue)"collect terms in x"#
#rArrx(3y^2-4)=1+3y^2larrcolor(blue)"factorising"#
#rArrx=(1+3y^2)/(3y^2-4)to(y!=+-4/3)#
#color(blue)"As a check"#
#"let x = 2"#
#"then " y=sqrt(9/3)=sqrt3#
#"substitute into the expression for x we should get 2"#
#x=(1+3(sqrt3)^2)/(3(sqrt(3)^2-4))=(1+9)/(9-4)=10/5=2#