Solve this 2nd Order Cauchy-Euler non-homogeneous differential Equation by substitution method using (x = e^t) x^2y'' - xy' + y = lnx ?

Solve this 2nd Order Cauchy-Euler non-homogeneous differential Equation by substitution method using #(x = e^t):color(white)("d")#

#x^2y'' - xy' + y = lnx# ?

1 Answer
Feb 27, 2018

#y=Lnx+2+C_1xLnx+C_2x#

Explanation:

After using #x=e^t# transform, #dx=e^t*dt# or #dt/dx=1/e^t=e^(-t)#

After using chain rule,

#y'=dy/dx#

=#dy/dt*dt/dx#

=#dy/dt*e^(-t)# and,

#y''=dy/dt(dy/dt*e^(-t))*dt/dx#

=#(d^2y)/dt^2*e^(-2t)-dy/dt*e^(-2t)#

Hence,

#x^2*y''-xy'+y=Lnx#

#e^(2t)*[(d^2y)/dt^2*e^(-2t)-dy/dt*e^(-2t)]-e^t*dy/dt*e^(-t)+y=Ln(e^t)#

#(d^2y)/dt^2-2dy/dt+y=t#

After setting #dy/dt=Dy# and #(d^2y)/dt^2=D^2y#

#D^2y-2Dy+y=t#

#(D^2-2D+1)*y=t#

#(D-1)^2*y=t#

#(D-1)^2*y*e^(-t)=te^(-t)#

#[(D-1)*y*e^(-t)]'=te^(-t)#

#(D-1)*y*e^(-t)=int te^(-t)*dt#

#(D-1)*y*e^(-t)=-te^(-t)-e^(-t)+C_1#

#[y*e^(-t)]'=-te^(-t)-e^(-t)+C_1#

#y*e^(-t)=-int te^(-t)*dt-int e^(-t)*dt+C_1int dt#

#y*e^(-t)=-[-te^(-t)-e^(-t)]+e^(-t)+C_1t+C_2#

#y*e^(-t)=te^(-t)+2e^(-t)+C_1t+C_2#

#y=t+2+C_1te^t+C_2e^t#

After using #x=e^t# and #t=lnx# inverse transforms, I found

#y=Lnx+2+C_1xLnx+C_2x#