Solve #x^2 y dy/dx-x^2=1# ?

Solve #x^2 y dy/dx-x^2=1#

1 Answer
Jun 21, 2018

The general solution is #y=+-sqrt((-2+2x^2+2Cx)/x)#

Explanation:

This is a first order separable ODE

#x^2ydy/dx-x^2=1#

Dividing by #x^2#

#ydy/dx-1=1/x^2#

#ydy/dx=1/x^2+1#

#ydy=(1/x^2+1)dx#

Integrating both sides

#intydy=int(1/x^2+1)dx#

#1/2y^2=-1/x+x+C#

#y^2=-2/x+2x+2C#

#y^2=(-2+2x^2+2Cx)/x#

#y=+-sqrt((-2+2x^2+2Cx)/x)#