The solubility of silver acetate in pure water at #25^o#C is #8.35 g/L# and #61.8 g/L# in an acid solution of #pH=3#. Calculate?

(i) #K_(sp)# of silver acetate.
(ii) dissociation constant of acetic acid.

1 Answer
Mar 3, 2018

Warning! Long Answer. (i) #K_text(sp) = 2.50 × 10^"-3"#; (ii) #K_text(a) = 1.82 × 10^"-5"#

Explanation:

This problem is a disguised Hess' Law problem using equilibrium constants.

(i) #K_text(sp)# for silver acetate

#s = (8.35 color(red)(cancel(color(black)("g"))))/"1 L" × ("1 mol")/(166.91 color(red)(cancel(color(black)("g")))) = 5.003 × 10^"-2" color(white)(l)"mol/L"#

#color(white)(mmmmmm)"AgOAc" ⇌ "Ag"^"+" + "AcO"^"-"#
#"E/mol·L"^"-1": color(white)(mmmmmmm)scolor(white)(mmm)s#

#K_text(sp) = ["Ag"^"+"]["AcO"^"-"] = s^2 = (5.003 × 10^"-2")^2 = 2.50 × 10^"-3"#

At pH 3

#s = (61.8 color(red)(cancel(color(black)("g"))))/"1 L" × "1 mol"/(166.91 color(red)(cancel(color(black)("g")))) = 3.702 × 10^"-1" color(white)(l)"mol/L"#

The equilibrium reaction is

#color(white)(mmmmmm)"AgOAc" + "H"_3"O"^"+" ⇌ "Ag"^"+" + "HOAc" + "H"_2"O"#
#"E/mol·L"^"-1": color(white)(mmmmll)1.0 ×10^"-3" color(white)(mll)scolor(white)(mmmll)s#

#K_text(eq) = (["Ag"^"+"]["HOAc"])/(["AcO"^"-"]) = s^2/(1.0 × 10^"-3") = (3.702 × 10^"-1")^2/(1.0 × 10^"-3")#

#= 1.371 × 10^2#

(ii) #K_text(a)# for acetic acid

We have two equations:

#bb(1.) color(white)(m)"AgOAc" ⇌ "Ag"^"+" + "AcO"^"-"; color(white)(mmmmmmmmll)K_1 = 2.503 × 10^"-3"#
#bb(2.) color(white)(m)"AgOAc" + "H"_3"O"^"+" ⇌ "Ag"^"+" + "HOAc" + "H"_2"O"; K_2 = 1.371 × 10^2#

From these, we must construct the target equation.

#"HOAc + H"_2"O" ⇌ "H"_3"O"^"+" + "AcO"^"-"#

The target equation has #"HOAc"# on the left, so we reverse Equation 2.

#bb(3.) color(white)(m)"Ag"^"+" + "HOAc" + "H"_2"O" ⇌ "AgOAc" + "H"_3"O"^"+"; K_3 = 1/K_2#

The target equation has #"AgOAc"# on the right, so we rewrite equation 1.

#bb(4.) color(white)(m)"AgOAc" ⇌ "Ag"^"+" + "AcO"^"-"; color(white)(mmmmmmmmll)K_4 = K_1#

Now, we add Equations 3. and 4.

#bb(3.) color(white)(m)color(red)(cancel(color(black)("Ag"^"+"))) + "HOAc" + "H"_2"O" ⇌ color(red)(cancel(color(black)("AgOAc"))) + "H"_3"O"^"+"; K_3 = 1/K_2#
#bb(4.) color(white)(m)ul(color(red)(cancel(color(black)("AgOAc"))) ⇌ color(red)(cancel(color(black)("Ag"^"+"))) + "AcO"^"-"color(white)(mmmmm)); color(white)(mmmll)ul(K_4 = K_1color(white)(m))#
#bb(5.) color(white)(m)"HOAc" + "H"_2"O" ⇌ "H"_3"O"^"+" + "AcO"^"-"; color(white)(mmmmmm)K_text(a) = K_3K_4 = K_1/K_2#

#K_text(a) = (2.50× 10^"-3")/(1.371 ×10^2) = 1.82 × 10^"-5"#