The solution of #sqrt(x)*y' + (1-2sqrt(x))*sqrt(y)= 0# is #(-2*sqrt(x)-1)*e^-sqrt(x)# ??

2 Answers
Mar 11, 2018

No. Please see the explanation.

Explanation:

Given: #sqrt(x)*y' + (1-2sqrt(x))sqrt(y)= 0#

Use the separation of variables method:

#sqrt(x)dy/dx = (2sqrt(x)-1)sqrt(y)#

#1/sqrtydy = (2-1/sqrtx)dx#

#2sqrty= 2x-2sqrtx+C#

#sqrty= x-sqrtx+C#

#y = (x-sqrtx+C)^2 larr# this is not the same form as the proposed solution, therefore, the answer is no.

Mar 11, 2018

#y = (x-sqrtx + C_0)^2#

Explanation:

Making

#z = sqrty rArr z' = 1/2 (y')/sqrty rArr y' = 2 z z'#

so

#sqrt(x)*y' + (1-2sqrt(x))*sqrt(y)= 0 equiv 2sqrt(x)*zz' + (1-2sqrt(x))*z= 0 rArr z(2sqrt(x)z' + (1-2sqrt(x)))= 0#

and then

#{(z=0),(2sqrt(x)z' + (1-2sqrt(x))= 0):}#

or

#z' = -(1-2 sqrtx)/(2sqrtx) rArr z = x-sqrtx + C_0#

and finally

#y = (x-sqrtx + C_0)^2#