Using #sin^2x+cos^2x=1# and other trig properties, simplify the following: # {cos^2 x tan^2 x }/{ 1-sin^2 x}# ? Show all work.

2 Answers
May 18, 2018

# {cos^2 x tan ^2 x}/{1 - sin ^2 x} ={ \cos ^2 x \ {sin ^2 x}/{cos ^2 x} }/{ cos ^2 x} = {sin ^2 x}/{cos^2x } = tan ^2 x #

Explanation:

Show all work? Goes without saying.

Not too much work here. We substitute

#tan^2 x = sin ^2 x / cos ^2 x #

#cos ^2 x + sin ^2 x = 1 #

# 1 - sin ^2 x = cos ^2 x #

So

# {cos^2 x tan ^2 x}/{1 - sin ^2 x} ={ \cos ^2 x \ {sin ^2 x}/{cos ^2 x} }/{ cos ^2 x} = {sin ^2 x}/{cos^2x } = tan ^2 x #

May 18, 2018

#(cos^2x*tan^2x)/(1-sin^2x)=tan^2x#

Explanation:

We have,

#sin^2x+cos^2x=1#

#=>cos^2x=1-sin^2x#

So,

#(cos^2x*tan^2x)/(1-sin^2x)= (cancel(cos^2x)tan^2x)/cancel(cos^2x)=tan^2x#