What are possible value(s) of x and y if #y^2=x^2-64# and #3y=x+8?#?
2 Answers
#(x, y) = (-8, 0), (10, 6)
Explanation:
Explanation:
#y^2=x^2-48to(1)#
#3y=x+8to(2)#
#"from equation "(2)" we can express x in terms of y"#
#rArrx=3y-8to(3)#
#"substitute "x=3y-8" in equation "(1)#
#rArry^2=(3y-8)^2-64larrcolor(blue)"expand "(3y-8)^2#
#rArry^2=9y^2-48ycancel(+64)cancel(-64)#
#rArr8y^2-48y=0larrcolor(blue)"factorise"#
#8y(y-6)=0#
#"equate each factor to zero and solve for y"#
#8y=0rArry=0#
#y-6=0rArry=6#
#"substitute these values into equation "(3)#
#y=0rArrx=-8rArr(-8,0)#
#y=6rArrx=18-8=10rArr(10,6)#
graph{(y^2-x^2+64)(y-1/3x-8/3)((x+8)^2+(y-0)^2-0.04)((x-10)^2+(y-6)^2-0.04)=0 [-20, 20, -10, 10]}