What are the components of the vector between the origin and the polar coordinate #(5, (5pi)/3)#?
1 Answer
Apr 7, 2016
Explanation:
To convert Polar to Cartesian coordinates , use the formulae that link them.
#• x = rcostheta #
#• y = rsintheta # here r = 5 and
# theta = (5pi)/3 #
#rArr x = 5cos((5pi)/3)" and " y = 5sin((5pi)/3) #
#"-----------------------------------------------------------------------"# now
# cos((5pi)/3) = cos(pi/3) " and " sin((5pi)/3) = -sin(pi/3)# using
#color(blue)" exact values for these ratios " #
#rArr cos(pi/3) = 1/2" and " -sin(pi/3) = -sqrt3/2 #
#"-----------------------------------------------------------------------"#
#rArr x = 5cos((5pi)/3) = 5cos(pi/3) = 5xx1/2 = 5/2 # and
# y = 5sin((5pi)/3) = -5sin(pi/3) = -5xxsqrt3/2 = (-5sqrt3)/2 #