What are the components of the vector between the origin and the polar coordinate #(5, (5pi)/3)#?

1 Answer
Apr 7, 2016

# ((5/2),(-(5sqrt3)/2))#

Explanation:

To convert Polar to Cartesian coordinates , use the formulae that link them.

#• x = rcostheta #

#• y = rsintheta #

here r = 5 and # theta = (5pi)/3 #

#rArr x = 5cos((5pi)/3)" and " y = 5sin((5pi)/3) #
#"-----------------------------------------------------------------------"#

now # cos((5pi)/3) = cos(pi/3) " and " sin((5pi)/3) = -sin(pi/3)#

using #color(blue)" exact values for these ratios " #

#rArr cos(pi/3) = 1/2" and " -sin(pi/3) = -sqrt3/2 #
#"-----------------------------------------------------------------------"#

#rArr x = 5cos((5pi)/3) = 5cos(pi/3) = 5xx1/2 = 5/2 #

and # y = 5sin((5pi)/3) = -5sin(pi/3) = -5xxsqrt3/2 = (-5sqrt3)/2 #