What are the coordinates of the #x#-intercept of #-5y=4-2x#?

1 Answer
May 19, 2017

See a solution process below:

Explanation:

To find the #x#-intercept, substitute #0# for #y# and solve for #x#:

#-5y = 4 - 2x# becomes:

#-5 xx 0 = 4 - 2x#

#0 = 4 - 2x#

#-color(red)(4) + 0 = -color(red)(4) + 4 - 2x#

#-4 = 0 - 2x#

#-4 = -2x#

#(-4)/color(red)(-2) = (-2x)/color(red)(-2)#

#2 = (color(red)(cancel(color(black)(-2)))x)/cancel(color(red)(-2))#

#2 = x#

Therefore the coordinates of the #x#-intercept are: #(2, 0)#