What are the critical numbers of #f(x) = x (5 + 6 ln x)#?

1 Answer
Nov 1, 2016

There is one critical point at # (e^(-11/6), - e^(-11/6)) #

Explanation:

You need to use the product rule; # d/dx(uv)=u(dv)/dx+v(du)/dx #

So with # f(x)=x(5+6lnx) # we have;

# f'(x) = { (x)(d/dx(5+6lnx)) + (5+6lnx)(d/dxx) } #
# :. f'(x) = { (x)(6/x) + (5+6lnx)(1) } #
# :. f'(x) = 6 + 5+6lnx #
# :. f'(x) = 11+6lnx #

At critical points, we have # f'(x)=0 #

# f'(x)=0 => 11 + 6lnx = 0 #
# :. lnx = -11/6 #
# :. x = e^(-11/6) (~~ 0.16)#

When # x = e^(-11/6) => f(x) = e^(-11/6)(5+6(-11/6)) #
:. # f(x) = e^(-11/6)(5-6) = - e^(-11/6) #

So there is one critical point at # (e^(-11/6), - e^(-11/6)) #

graph{x(5+6lnx) [-1, 2, -2, 5]}