What are the intercepts of #-7y=3y-2(x-9) -x^2#?

1 Answer
Jun 6, 2018

#x=-10+-sqrt19#

#y=-9/5#

Explanation:

To find the y-intercepts set x=0 and solve for y:

#-7y=3y-2(x-9) -x^2#

#-7y=3y-2(0-9) -0^2#

#-7y=3y-2(-9)#

#-7y=3y+18#

#-7y=3y+18#

#-10y=18#

#y=-9/5#

To find the x-intercept(s) if they exist set y=0 and solve for x:

#-7y=3y-2(x-9) -x^2#

#-7(0)=3(0)-2(x-9) -x^2#

#0=-2(x-9) -x^2#

#0=-x^2-2(x-9)#

#0=-x^2-2x+18#

#0=x^2+2x-18#

You will need to complete the square or use the quadratic equation to find these roots:

#x=-10+-sqrt19#

graph{-7y=3y-2(x-9) -x^2 [-20.58, 19.42, -4.8, 15.2]}