What are the values of #a# and #b# if #ax^4 - bx^3 + 40x^2 + 24x + 36# is a perfect square?
1 Answer
Explanation:
Since the degree
#alphax^2+betax+gamma#
If we start with this generic trinomial and square it, we get
#(alphax^2+betax+gamma)^2#
#=color(magenta)(alpha^2)x^4+color(magenta)(2alphabeta)x^3+(color(magenta)(alphagamma + beta^2))x^2+color(magenta)(2betagamma)x+color(magenta)(gamma^2)#
If this is to be equal to
#a=alpha^2#
#"–"b=2alphabeta#
#40=alphagamma+beta^2#
#24=2betagamma#
#36=gamma^2#
We can set up a system of linear equations to solve this, or we can solve them one by one as follows:
Let's see what we get when we let
#24=2beta(6)#
#color(white)0 2=beta#
So far so good; now what about
#40=alpha(6)+(2)^2#
#40=6alpha+4#
#36=6alpha#
#color(white)0 6=alpha#
No problems there. Now that we have values for each
#a=alpha^2#
#a=(6)^2#
#a=36#
and
#"–"b=2alphabeta#
#"–"b=2(6)(2)#
#"–"b=24" "=>" "b="–"24#
So
#36x^4-("–"24)x^3+40x^2+24x+36#
which simplifies to
#36x^4+24x^3+40x^2+24x+36# .
Bonus:
This isn't the only solution! As you may infer from the minus sign in front of
#36x^4-24x^3+40x^2+24x+36# .