What happens to each HCI molecule when it is dissolved in water?

1 Answer
Mar 20, 2018

Well hydrogen chloride is a strong acid....and it is conceived to protonate the water solvent....

Explanation:

...and it is conceived to PROTONATE the water molecule in an acid base interaction....i.e.

#HCl(g) + H_2O(l) rarr H_3O^+ + Cl^-#

#HCl(g)# is a source of hydronium ion, #H_3O^+# in aqueous solution.........

Taken from a prior answer.....

We may take a tank of #HCl(g)#, and we can bleed it in to water to give an AQUEOUS solution that we could represent as #HCl(aq)# OR #H_3O^+# and #Cl^−#.

#HCl(g) stackrel(H_2O)rarrunderbrace(H_3O^(+))_("hydronium ion") +Cl^-#

In each case this is a REPRESENTATION of what occurs in solution. If we bleed enuff gas in, we achieve saturation at a concentration of approx. #10.6*mol*L^-1# with respect to hydrochloric acid.

As far as anyone knows, the actual acidium ion in solution is
#H_5O_2^+# or #H_7O_3^+#, i.e. a cluster of 2 or 3 or 4 water molecules with an EXTRA #H^+# tacked on. We represent it in solution (without loss of generality) as #H_3O^+#, the #"hydronium ion"#, which is clearly the conjugate acid of #H_2O#. Representation of the acidium species as the protium ion, #H^+#, is also still very common.

Note that the #H^+# is quite mobile, and passes, tunnels if you like, the extra #H^+# from cluster to cluster. If you have ever played rugby, I have always liked to compare to this to when the forwards form a maul, and can pass the pill from hand to hand to the back of the maul while the maul is still formed. Of course, tunnelling, proton transfer, is more likely in a cluster of water molecules, so the analogy might not be particularly apt in that there is definite transfer of a ball in a maul, but a charge in a water cluster is conceivably tunnelled. The same applies to the transfer of an hydroxide ion. For this reason both #H^+# and #HO^-# have substantial mobility in aqueous solution, and much greater mobility in solution than ions such as #Na^+#, etc.

Depending at which level you are at (and I don't know!, which is part of the problem in answering questions on this site), you might not have to know the details at this level of sophistication. The level I have addressed here is probably 1st/2nd year undergrad.........