What is #(1/2x^4)^8#?

1 Answer
Mar 8, 2016

#x^32/256#

Explanation:

#1#. Distribute the exponent, #8#, to all of the terms in the brackets.

#(1/2x^4)^8#

#=(1/2)^8(x^4)^8#

#2#. Simplify. Recall the exponent power rule: #(a^m)^n=a^(m*n)#.

#=(1^8/2^8)(x^(4*8))#

#3#. Solve.

#=1/256x^32#

#color(green)(=x^32/256)#