What is #143296-:931#?

2 Answers
Apr 21, 2016

#143296-:931# gives #153# as quotient and #853# as remainder or
#143296-:931=153 853/931#

Explanation:

We can write #143296# as #143200+90+6#

Hence #143296-:931=(931xx100)+143200-93100+90+6#

= #(931xx100)+50100+90+6=(931xx100)+50190+6#

= #(931xx100)+(931xx50)+50190-931xx50+6#

= #(931xx100)+(931xx50)+50190-46550+6#

= #(931xx100)+(931xx50)+3640+6=(931xx100)+(931xx50)+3646#

= #(931xx100)+(931xx50)+(931xx3)+3646-2793#

= #(931xx100)+(931xx50)+(931xx3)+853=931xx153+853#

Hence, #143296-:931# gives #153# as quotient and #853# as remainder or #143296-:931=153 853/931#

Jul 3, 2016

#153color(white)(.) 853/931#

Explanation:

color(white)(..)
#" "143296#
#color(magenta)(100)xx931 ->" "ul(color(white)(.) 93100) larr" Subtract"#
#" "color(white)(..)color(green)(50196)#
#color(magenta)(50)xx931 ->" "color(white)(..)ul(46550) larr" Subtract"#
#" "color(white)(..)3646#
#color(magenta)(3)xx931 ->" "ul(color(white)(..)2793) larr" Subtract"#
#" "color(white)(..)color(magenta)(853 larr" Remainder")#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(magenta)(100+50+3+853/931)#

#153color(white)(.) 853/931#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Tip about method")#

Suppose you did not know that the maximum number of 10's you could multiply by was 5 giving #color(magenta)(50)#

#" "color(white)(..)bar(color(green)(50196))#
#color(magenta)(20)xx931 ->ul(color(white)(..)18620) larr" Subtract"#
#" "32576#
#color(magenta)(20)xx931 ->ul(color(white)(..)18620) larr" Subtract"#
#" "24956#
#color(magenta)(10)xx931 ->ul(color(white)( ....)9310) larr" Subtract"#
#" "5646 larr " Now the digit count has reduced by 1"#
So there is no more 10's to divide by. Thus the total count of tens is

#color(magenta)(20+20+10 = 50)#