What is # || < -3, -3, 0 > || #?

1 Answer
Jan 31, 2016

Answer:

#sqrt18#

Explanation:

For any n-dimensional vector #A=(a_1,a_2,...,a_n)#, the norm of the vector is given by #||A||=sqrt(a_1^2+a_2^2+...+a_n^2#.

So in this particular case we work in #RR^3# and get

#|| ( (-3, -3, 0)) ||=sqrt((-3)^2+(-3)^2+0^2#

#=sqrt18#