# What is 3(x-4) = 2x - (3x - 4) ?

## I tried to solve it but when i plug the numbers, both sides are unequal.

Nov 30, 2017

$x = 4$

#### Explanation:

Start of by distributing the numbers. So, do this:

Actual Equation:
$3 \left(x - 4\right) = 2 x - \left(3 x - 4\right)$

Actual Equation after distributing the numbers:
$3 x - 12 = 2 x - 3 x + 4$

Notice how I multiplied the $\left(x - 4\right)$ with $3$ and the $\left(3 x - 4\right)$ with the $-$. If you want to take the parentheses out, multiply the quantity inside the parentheses with the number that is directly outside of the parentheses. ex: $3 \left(x - 4\right)$ or $- \left(3 x - 4\right)$

$- \left(3 x - 4\right)$ became $- 3 x + 4$ because the number that is outside of the parentheses is $- 1$, therefore multiplying $\left(3 x - 4\right)$ with $- 1$ equals $- 3 x + 4$.

Your second step would be to shift the $x$ variables onto one side. I'm going to shift it to the left side.

$3 x - 12 = 2 x - 3 x + 4$

Step 3: Simplify the $2 x - 3 x$ into $- x$

$3 x - 12 = - x + 4$

Step 4: Add $x$ to each side

$4 x - 12 = 4$

Step 5: Add $12$ to each side

$4 x = 16$

Step 6: Divide each number by $4$

$x = 4$