What is a possible set of four quantum numbers (n,l,ml,ms) in order, for the highest energy electron in gallium?

1 Answer
Jun 18, 2016

Gallium (#"Ga"#) is atomic number #31# and it is on column 13, row 4.

https://en.wikipedia.org/

So its electron configuration involves the #1s#, #2s#, #2p#, #3s#, #3p#, #4s#, #3d#, and #4p# orbitals.

#=> 1s^2 2s^2 2p^6 3s^2 3p^6 3d^10 4s^2 4p^1#

or

#=> color(blue)([Ar] 3d^10 4s^2 4p^1)#

The highest energy electron in #"Ga"# is the single #4p# electron, which can either be in the #4p_x#, #4p_y#, or #4p_z# orbital, and it can either be spin up or spin down. So, there are #2xx3 = 6# possible sets of quantum numbers.

For the #4p# orbital:

  • #n = 1,2, . . . , N => color(blue)(4)# for the principal quantum number.
  • #l = 0,1,2, . . . , n-1 => color(blue)(1)# for the angular momentum quantum number.
  • #m_l = {0, 1, . . . , pml} = {0, pm1}# for the magnetic quantum number, so there exist #2l+1 = 2(1) + 1 = 3# total #4p# orbitals.

For a #4p# electron:

  • The quantum numbers #n# and #l# are fixed.
  • #m_l# will vary as #color(blue)(-1)#, #color(blue)(0)#, or #color(blue)(+1)# as mentioned above, and tells you that there are three #4p# orbitals.
  • #m_s#, the spin quantum number, can be #color(blue)(pm1/2)#.

Thus, the 6 possible sets of quantum numbers are:

  1. #(n,l,m_l,m_s) = color(blue)("("4,1,-1,+1/2")")#
  2. #(n,l,m_l,m_s) = color(blue)("("4,1,0,+1/2")")#
  3. #(n,l,m_l,m_s) = color(blue)("("4,1,+1,+1/2")")#
  4. #(n,l,m_l,m_s) = color(blue)("("4,1,-1,-1/2")")#
  5. #(n,l,m_l,m_s) = color(blue)("("4,1,0,-1/2")")#
  6. #(n,l,m_l,m_s) = color(blue)("("4,1,+1,-1/2")")#

Another way to represent this each one of these, respectively, is:

  1. #color(white)([(" ",color(black)(uarr),color(black)(ul(" ")),color(black)(ul(" "))), (color(black)("orbital": ), color(black)(4p_x),color(black)(4p_y),color(black)(4p_z)), (color(black)(m_l: ),color(black)(-1),color(black)(0),color(black)(+1))])#

  2. #color(white)([(" ",color(black)(ul(" ")),color(black)(uarr),color(black)(ul(" "))), (color(black)("orbital": ), color(black)(4p_x),color(black)(4p_y),color(black)(4p_z)), (color(black)(m_l: ),color(black)(-1),color(black)(0),color(black)(+1))])#

  3. #color(white)([(" ",color(black)(ul(" ")),color(black)(ul(" ")),color(black)(uarr)), (color(black)("orbital": ), color(black)(4p_x),color(black)(4p_y),color(black)(4p_z)), (color(black)(m_l: ),color(black)(-1),color(black)(0),color(black)(+1))])#

  4. #color(white)([(" ",color(black)(darr),color(black)(ul(" ")),color(black)(ul(" "))), (color(black)("orbital": ), color(black)(4p_x),color(black)(4p_y),color(black)(4p_z)), (color(black)(m_l: ),color(black)(-1),color(black)(0),color(black)(+1))])#

  5. #color(white)([(" ",color(black)(ul(" ")),color(black)(darr),color(black)(ul(" "))), (color(black)("orbital": ), color(black)(4p_x),color(black)(4p_y),color(black)(4p_z)), (color(black)(m_l: ),color(black)(-1),color(black)(0),color(black)(+1))])#

  6. #color(white)([(" ",color(black)(ul(" ")),color(black)(ul(" ")),color(black)(darr)), (color(black)("orbital": ), color(black)(4p_x),color(black)(4p_y),color(black)(4p_z)), (color(black)(m_l: ),color(black)(-1),color(black)(0),color(black)(+1))])#