What is arcsin(sin(1/4)) ? Trigonometry Inverse Trigonometric Functions Basic Inverse Trigonometric Functions 1 Answer Alan P. Jan 6, 2017 arcsin(sin(1/4))=color(green)(1/4) Explanation: By definition the arcsin function returns a value in the range [0,pi) As long as theta is in the range [0,pi) color(white)("XXX")arcsin(sin(theta))=theta Answer link Related questions What are the Basic Inverse Trigonometric Functions? How do you use inverse trig functions to find angles? How do you use inverse trigonometric functions to find the solutions of the equation that are in... How do you use inverse trig functions to solve equations? How do you evalute sin^-1 (-sqrt(3)/2)? How do you evalute tan^-1 (-sqrt(3))? How do you find the inverse of f(x) = \frac{1}{x-5} algebraically? How do you find the inverse of f(x) = 5 sin^{-1}( frac{2}{x-3} )? What is tan(arctan 10)? How do you find the arcsin(sin((7pi)/6))? See all questions in Basic Inverse Trigonometric Functions Impact of this question 3781 views around the world You can reuse this answer Creative Commons License