What is #f'(x)# if #f(x)=sin((cosx)/x)#?

1 Answer
Aug 15, 2017

#f'(x) = -(xsinx+cosx)/x^2*cos(cosx/x)#

Explanation:

#f(x) = sin(cosx/x)#

By the chain rule, #f'(x) = (cosx/x)^' *cos(cosx/x)#

Use the quotient rule to find #(cosx/x)^'#:

#(cosx/x)^' = ((-sinx)x-(1)cosx)/x^2= -(xsinx+cosx)/x^2#

# therefore f'(x) = -(xsinx+cosx)/x^2*cos(cosx/x)#