What is #f(x) = int x-e^(x-3)dx# if #f(0)=-2 #? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer Sonnhard Jul 12, 2018 #f(x)=x^2/2-e^(x-3)-2-e^(-3)# Explanation: using that #int x-e^(x-3) dx=x^2/2-e^(x-3)+C# we get that #f(0)=e^(-3)+C=-2# so #C=-2-e^(-3)# we have used that #int xdx=x^2/2+C_1# #int e^(x-3)dx=e^(x-2)+C_2# Answer link Related questions How do you find the constant of integration for #intf'(x)dx# if #f(2)=1#? What is a line integral? What is #f(x) = int x^3-x# if #f(2)=4 #? What is #f(x) = int x^2+x-3# if #f(2)=3 #? What is #f(x) = int xe^x# if #f(2)=3 #? What is #f(x) = int x - 3 # if #f(2)=3 #? What is #f(x) = int x^2 - 3x # if #f(2)=1 #? What is #f(x) = int 1/x # if #f(2)=1 #? What is #f(x) = int 1/(x+3) # if #f(2)=1 #? What is #f(x) = int 1/(x^2+3) # if #f(2)=1 #? See all questions in Evaluating the Constant of Integration Impact of this question 1290 views around the world You can reuse this answer Creative Commons License