Here,
#I=int_0^8 sqrt(8x-x^2dx#
#=int_0^8sqrt(16-(x^2-8x+16))dx#
#=int_0^8sqrt(4^2-(x-4)^2)dx#
We know that ,
#color(red)(intsqrt(a^2-X^2)dX=X/2sqrt(a^2-X^2)+a^2/2sin^-1(X/a)+c#
Put, #a=4 and X=x-4#
#I=[(x-4)/4sqrt(4^2-(x-4)^2)+4^2/2sin^-1((x-4)/4)]_0^8#
#=>I=[(x-4)/4sqrt(8x-x^2)+8sin^-1((x-4)/4)]_0^8#
#=>I=[(8-4)/4sqrt(64-64)+8sin^-1((8-4)/4)]-[(0-4)/4sqrt(0-
0^2)+8sin^-1((0-4)/4)]#
#=[0+8sin^-1(1)]-[0+8sin^-1(-1)]#
#=8sin^-1(1)-8sin^-1(-1)#
#=8sin^-1(1)+8sin^-1(1)#
#=8(pi/2)+8(pi/2)#
#=4pi+4pi#
#=8pi#